CONVOLUTION MEASURE ALGEBRAS WITH GROUP MAXIMAL IDEAL SPACES(1)

BY JOSEPH L. TAYLOR

Let G denote a locally compact abelian topological group (an l.c.a. group) with dual group G^{\wedge} . We will denote by M(G) the Banach algebra of bounded regular Borel measures on G under convolution multiplication and by L(G) the algebra of bounded measures absolutely continuous with respect to Haar measure on G (for discussions of these Banach algebras cf. [1], [2], and [5]).

In this paper we shall be concerned with closed subalgebras \mathfrak{M} of M(G) with the following two properties:

- (1) if $\mu \in \mathfrak{M}$ and ν is absolutely continuous with respect to μ , then $\nu \in \mathfrak{M}$;
- (2) the maximal ideal space of \mathfrak{M} is G^{\wedge} , where the Gelfand transform μ^{\wedge} of $\mu \in \mathfrak{M}$ is given by $\mu^{\wedge}(\chi) = \int \bar{\chi} \ d\mu$ for $\chi \in G^{\wedge}$; i.e., the Gelfand transform coincides with the Fourier-Stieltjes transform on \mathfrak{M} .

Any closed subalgebra of M(G) satisfying (1) will be called an L-subalgebra of M(G). It is well known that L(G) satisfies (1) and (2) (cf. [5, Chapter 1]). In Theorem 1 we show that any L-subalgebra \mathfrak{M} of M(G), with $L(G) \subset \mathfrak{M} \subset (L(G))^{1/2}$, also satisfies (2), where $(L(G))^{1/2}$ is the intersection of all maximal ideals of M(G) containing L(G). We conjecture that the converse is also true; i.e., if \mathfrak{M} satisfies (1) and (2) then $L(G) \subset \mathfrak{M} \subset (L(G))^{1/2}$. In Theorem 2 we prove that this is true provided G contains no copy of R^n for n > 1.

The problem arises in the following way: in [6] we define the concept of abstract convolution measure algebra and prove that any such algebra \mathfrak{M} , provided it is commutative and semisimple, may be represented as an L-subalgebra of M(S), where S is a compact topological semigroup called the structure semigroup of \mathfrak{M} . M(G) and L(G) are convolution measure algebras as is any L-subalgebra of the measure algebra on a semigroup. The map $\mu \to \mu_S$ which embeds \mathfrak{M} in M(S) is an isometry as well as an algebraic isomorphism and it preserves the order theoretic properties of \mathfrak{M} as a space of measures. The maximal ideal space of \mathfrak{M} may be identified as S^{\wedge} , the set of all semicharacters of S, where the Gelfand transform of $\mu \in \mathfrak{M}$ is given by $\mu^{\wedge}(f) = \int f d\mu_S$ for $f \in S^{\wedge}$ (a semicharacter of S is a continuous homomorphism of S into the unit disc which is not identically zero). Under pointwise multiplication S^{\wedge} is a semigroup provided \mathfrak{M} has an approximate identity.

Received by the editors March 14, 1966.

⁽¹⁾ Portions of these results were presented to the meeting of the Society held January 24-29, 1966, under the same title. This research was supported in part by the United States Army Research Office (Durham).

Now, given this representation of \mathfrak{M} , it is natural to try to relate the algebraic structures of S and S^{\wedge} to the structure of \mathfrak{M} . In particular, if S and S^{\wedge} are groups, what can be said about \mathfrak{M} ? More generally, if G_1 is a maximal group contained in S, then its dual group G_1^{\wedge} is embedded in S^{\wedge} (cf. [6, §3]) and, if G_1 is not a set of measure zero for \mathfrak{M} , then G_1^{\wedge} is locally compact in the Gelfand topology of S^{\wedge} and, with this topology, is the maximal ideal space of \mathfrak{M}_1 , the algebra of measures in \mathfrak{M} which are concentrated on G_1 . It follows that G_1^{\wedge} , with the Gelfand topology (as opposed to the discrete topology it inherits from the compact group G_1), is the dual group G^{\wedge} of some l.c.a. group G (with Bohr compactification G_1) and that \mathfrak{M}_1 may be embedded as an L-subalgebra of M(G). Thus \mathfrak{M}_1 is a subalgebra of M(G) satisfying (1) and (2); i.e., by studying the relationship between maximal groups of S and the structure of \mathfrak{M} we are led to the problem posed in this paper.

Our problem may also be viewed as an attempt to extend results of Rieffel in [4]. Rieffel proves that if A is a commutative semisimple Banach algebra which is Tauberian and in which every multiplicative linear functional is L'-inducing, then A is L(G) for some l.c.a. group G. The hypothesis that every multiplicative linear functional is L'-inducing is equivalent to the existence of an l.c.a. group G such that A is a closed subalgebra of M(G) satisfying (1) and (2). The Tauberian hypothesis is extremely strong; it means that those elements of A whose transforms have compact support on G^{\wedge} are dense in A. If our conjecture is true, then without Rieffel's Tauberian hypothesis we may still conclude that $L(G) \subseteq A \subseteq (L(G))^{1/2}$. In Theorem 5.1 of [4] Rieffel mentions an example which shows that L(G) and $(L(G))^{1/2}$ may be distinct.

We now proceed with our development of Theorems 1 and 2. If B is any commutative Banach algebra and I is a closed ideal of B, then $I^{1/2}$ denotes the intersection of all maximal ideals of B which contain I. Under the natural map $x \to \xi_x$ from B to B/I, $I^{1/2}$ is the inverse image of $(0)^{1/2}$; but $\xi_x \in (0)^{1/2}$ if and only if $\lim_n \|\xi_x^n\|^{1/n} = 0$ (cf. [2, 24B]). Hence, $x \in I^{1/2}$ if and only if $\lim_n \inf_{y \in I} \|x^n + y\|^{1/n} = 0$. In Lemma 1 we use this fact to obtain a measure theoretic characterization of the radical of an L-ideal, where an L-ideal \Re of a convolution measure algebra \Re is an ideal such that whenever $\mu \in \Re$ and $\nu \in \Re$ with ν absolutely continuous with respect to μ , then $\nu \in \Re$.

If two measures μ and ν are mutually singular, then we write $\mu \perp \nu$. If \mathfrak{N}_1 and \mathfrak{N}_2 are sets of measures, then $\mathfrak{N}_1 \perp \mathfrak{N}_2$ means $\mu \perp \nu$ for every $\mu \in \mathfrak{N}_1$ and $\nu \in \mathfrak{N}_2$. By $|\mu|$ we mean the measure defined by the total variation of μ .

LEMMA 1. If $\mathfrak R$ is an L-ideal in a convolution measure algebra $\mathfrak M$, then $\mathfrak R^{1/2}$ is also an L-ideal and $\mu \in \mathfrak R^{1/2}$ if and only if $\mu \perp \{ \nu \in \mathfrak M : |\nu|^n \perp \mathfrak R \text{ for } n=1,2,\ldots \}$.

Proof. Let S be the structure semigroup of $\mathfrak M$ as in [6] and $\mu \to \mu_S$ the embedding of $\mathfrak M$ into M(S). Let A be the smallest closed subset of S on which each μ_S for $\mu \in \mathfrak M$ is concentrated. A maximal regular ideal of $\mathfrak M$ containing $\mathfrak N$ corresponds to a semicharacter $f \in S^{\hat{}}$ such that $\int f d\mu_S = 0$ for each $\mu \in \mathfrak M$. Since $\mathfrak N$ is an L-ideal it

follows that such an f must be identically zero on A. Let J be the set of all such semicharacters f together with the identically zero function on S; then J is closed under conjugation and pointwise multiplication. Let $A' = \{s \in S : f(s) = 0 \text{ for all } f \in J\}$. Since S° separates points in $S \setminus A'$ and, thus, the Stone-Weierstrass theorem implies that the closed linear span of J in C(S) consists of those continuous functions which vanish on A'. Now $\mathfrak{N}^{1/2}$ consists of those measures μ in \mathfrak{M} for which $\int f d\mu_S = 0$ for all $f \in J$; i.e., those measures $\mu \in \mathfrak{M}$ for which μ_S is concentrated on A'. It follows that $\mathfrak{N}^{1/2}$ is an L-ideal.

Since $\mathfrak{N}^{1/2}$ is an *L*-ideal, $\mu \in \mathfrak{N}^{1/2}$ if and only if $|\mu| \in \mathfrak{N}^{1/2}$. Therefore, it suffices to prove the second part of Lemma 1 for positive μ . Let $\mu \in \mathfrak{M}$, $\mu \geq 0$, and $\nu \in \mathfrak{M}$ such that $|\nu|^n \perp \mathfrak{N}$ for $n = 1, 2, \ldots$; then if μ and ν are not mutually singular, we may write $\mu = \mu_1 + \mu_2$ where $\mu_1, \mu_2 \geq 0$ and $0 \neq \mu_2 \leq |\nu|$. Then $\|\omega + \mu^n\| \geq \|\mu_2\|^n$ for every $\omega \in \mathfrak{N}$, since $\mu_2^n \leq |\nu|^n \perp \mathfrak{N}$. Hence $\lim_n \inf_{\omega \in \mathfrak{N}} \|\omega + \mu^n\|^{1/n} \geq \|\mu_2\| \neq 0$, and $\mu \notin \mathfrak{N}^{1/2}$. Thus if $\mu \in \mathfrak{N}^{1/2}$ then $\mu \perp \nu$ whenever $\nu \in \mathfrak{M}$ and $|\nu|^n \perp \mathfrak{N}$ for $n = 1, 2, \ldots$

To see the converse, note that if $\mu \notin \mathfrak{N}^{1/2}$ then there is a semicharacter f in the set J described above for which $\int f \, d\mu_S \neq 0$. We may write $\mu = \omega + \nu$ where ω_S is concentrated on the set where f is zero and ν_S is concentrated on the set where f is nonzero. Since f is multiplicative, ν_S^n is also concentrated on the set where f is nonzero and, hence, $|\nu|^n \perp \mathfrak{N}$ for each n. This completes the proof, since μ and ν are not mutually singular.

THEOREM 1. If \mathfrak{M} is an L-subalgebra of M(G) and $L(G) \subseteq \mathfrak{M} \subseteq (L(G))^{1/2}$ then the maximal ideal space of \mathfrak{M} is $G^{\hat{}}$; i.e., \mathfrak{M} satisfies (2).

Proof. It follows from the characterization of the radical in Lemma 1, that if \mathfrak{M}_2 is an L-subalgebra of a convolution measure algebra \mathfrak{M}_1 and if \mathfrak{N} is an L-ideal of both \mathfrak{M}_1 and \mathfrak{M}_2 , then the radical of \mathfrak{N} in \mathfrak{M}_2 is the intersection with \mathfrak{M}_2 of the radical of \mathfrak{N} in \mathfrak{M}_1 . Thus, if $L(G) \subseteq \mathfrak{M} \subseteq (L(G))^{1/2}$, then the radical of L(G) in \mathfrak{M} is \mathfrak{M} . It follows that L(G) and \mathfrak{M} have the same maximal ideal space, namely G^{\wedge} .

Before considering the converse problem we require a lemma concerning closed semigroups in l.c.a. groups.

LEMMA 2. If T is a closed proper subsemigroup of the l.c.a. group G which generates G (i.e., the closed subgroup generated by T is G), then there is a continuous homomorphism γ of G into the additive real numbers R such that $0 \neq \gamma(T) \subseteq R^+$, the set of nonnegative reals.

Proof. If T has an interior point x such that $-x \notin T$, then the lemma follows from results of Rieffel (cf. [4, Theorem 6.4]). We shall prove the lemma directly in the case where $G = K \times R^n$ for a compact group K, and use this to reduce the general case to Rieffel's result.

We prove the lemma for G of the form $K \times R^n$ by induction on n. If n=0 then G is compact and the lemma holds vacuously, since a closed subsemigroup of a

compact group must be a group (cf. [7, p. 99]) and, thus, T generates G would imply T=G. We now assume the lemma holds for n=p-1 and let $G=K\times R^p$ for some compact group K. Since T is not a group, there is some $x\in T$ for which $-x\notin T$. Since K is compact, $T\cap K$ is a group; hence, $x\notin K$. Note that without loss of generality we may assume that $0\notin T$ for, if $0\in T$, we may replace T by T'=x+T; then $0\notin T'$ and if γ is a homomorphism of G into G such that $g(T')\subseteq G^+$, then $g(T)\subseteq G^+$ but $g(T)\subseteq G^+$ is a semigroup, so $g(T)\subseteq G^+$.

In view of the above considerations, we may, without loss of generality, write G as $H \times R$, where $H = K \times R^{p-1}$, x is the element $(0, 1) \in H \times R$, and $(0, n) \in T$ for positive integers n but not for nonpositive integers n.

Let $G^+ = \{(h, r) \in H \times R : r \ge 0\}$ and $G^- = \{(h, r) \in H \times R : r \le 0\}$. If $T \subset G^+$ then the projection of $H \times R$ on R is the required γ . If $T \not\subset G^+$ we set $T^- = T \cap G^-$, $Z = \{(0, n) : n = 0, \pm 1, \pm 2, \ldots\}$, and let ϕ be the natural map from G to G/Z. Note that $(0, 1) \in T$ implies that $\phi(T^-) = \phi(T_0^-)$, where

$$T_0^- = \{(h, r) \in H \times R : -1 \le r \le 0\} \cap T^-,$$

and since $\phi(T_0^-)$ is closed, so is $\phi(T^-)$. Also, $Z \cap T^-$ is empty so $0 \notin \phi(T^-)$ and $\phi(T^-)$ is a closed proper subsemigroup of G/Z. To apply the induction hypothesis we need only show that $\phi(T^-)$ generates G/Z. If not, then $\phi(T^-) \subset J$ where J is a proper closed subgroup of G; if $y \in T$ and $w \in T^-$, then $y + w^n \in T^- \subset \phi^{-1}(J)$ for sufficiently large n, and, hence, $y \in \phi^{-1}(J)$; i.e., $T \subset \phi^{-1}(J)$ which contradicts the assumption that T generates G. Note that if p = 1 then T must be contained in G^+ , since G/Z is compact. Thus the lemma is proven in this case.

Now if p>1 the noncompact part of G/Z has dimension $p-1\neq 0$, and we may apply the induction hypothesis and conclude that there is a continuous homomorphism f of G/Z into R such that $0\neq f(\phi(T^-))\subset R^+$. We now define a map g of G into $R\times R$ by $g(h,r)=(f(\phi(h,r)),r)$; then g is a continuous homomorphism and $g(T)\cap\{(t,r):t<0,r<0\}$ is empty; i.e., g(T) misses the open third quadrant. From this and the fact that g(T) is a semigroup, it follows readily that the convex hull of g(T) also misses the third quadrant and may thus be separated from it by a straight line l passing through the origin. The line l may contain g(T), in which case we have reduced the problem to the one-dimensional case and may apply the last comment of the previous paragraph. If $g(T) \not\subset l$, then there is a continuous homomorphism α of $R\times R$ onto R, with kernel l, such that $0\neq \alpha(g(T)) \subset R^+$. Then α composed with g is the required map γ . This completes the induction.

To prove the lemma for G a general l.c.a. group, we use the structure theorem for l.c.a. groups (cf. [5, Theorem 2.4.1]) which says that G contains an open subgroup G_1 of the form $K \times R^n$ for a compact group K. Let β be the natural map from G to G/G_1 . If $\beta(T)$ is proper in G/G_1 , we may apply the above mentioned result of Rieffel to obtain γ , since G/G_1 is discrete. If $\beta(T) = G/G_1$ then every coset of G_1 in G contains an element of T. Then $T \cap G_1$ must be a proper generating subsemigroup of G_1 if T is to be a proper generating subsemigroup of G. Thus, we

may apply the result of the previous paragraph to obtain a continuous homomorphism γ_1 of G_1 into R such that $0 \neq \gamma(T \cap G_1) \subseteq R^+$. We write

$$G_1^+ = \{x \in G_1 : \gamma_1(x) \ge 0\}.$$

Then $G_1^+ + T$ is proper in G, for if $y \in G_1$ and y = x + t with $x \in G_1^+$ and $t \in T$, then $y - x \in G_1 \cap T$ and $\gamma_1(y - x) = \gamma_1(y) - \gamma_1(x) \ge 0$ so that $y \in G_1^+$ also. Clearly, $G_1^+ + T$ is closed, generates G, and has an interior point x such that $-x \notin G_1^+ + T$ (e.g., any $x \in G_1$ for which $\gamma_1(x) > 0$). We again apply Rieffel's result and the proof is complete.

Note that Lemma 2 implies that on a semigroup T of the above type there is a proper semicharacter, i.e., a semicharacter f for which $|f| \not\equiv 1$; in fact, $f(x) = e^{-s\gamma(x)}$ for s > 0 and $x \in T$ is such a semicharacter.

In what follows, \mathfrak{M} will denote a closed subalgebra of M(G) which satisfies (1) and (2). Lemmas 3 and 4 hold for arbitrary l.c.a. groups G, while the remainder of the proof of Theorem 2 requires special assumptions on G.

LEMMA 3. \mathfrak{M} is weak-* dense in M(G) and \mathfrak{M}^{\wedge} is uniformly dense in $C_0(G^{\wedge})$.

Proof. Let T= carrier (\mathfrak{M}) be the smallest closed subset of G on which each $\mu \in \mathfrak{M}$ is concentrated. Since \mathfrak{M} is an L-subalgebra of M(G), T is a closed subsemigroup of G, and \mathfrak{M} is weak-* dense in M(G) if and only if T=G. Since \mathfrak{M} separates points in G^{\wedge} , T cannot be contained in any closed proper subgroup of G; i.e., T generates G. If $T \neq G$ we may apply Lemma 2 and obtain a continuous homomorphism γ of G into G such that $0 \neq \gamma(T) \subseteq R^+$. Then $\mu \to \int e^{-\gamma(x)} d\mu(x)$ is a complex homomorphism of G which clearly does not correspond to any character of G. This contradicts the fact that G satisfies (2). We conclude that G and G is weak-* dense in G.

Let $\lambda \in M(G^{\wedge})$; then $\lambda^{\wedge}(x) = \int \bar{\chi}(x) d\lambda(x)$ is continuous on G, so there exists $\mu \in \mathfrak{M}$ for which $\int \lambda^{\wedge} d\mu = \int \mu^{\wedge} d\lambda \neq 0$. Hence \mathfrak{M}^{\wedge} is a dense subspace of $C_0(G^{\wedge})$. This completes the proof.

LEMMA 4. If $\mathfrak{M} \cap L(G) \neq (0)$ then $L(G) \subseteq \mathfrak{M} \subseteq (L(G))^{1/2}$.

Proof. $\mathfrak{M} \cap L(G)$ is an L-subalgebra of L(G) and an L-ideal of \mathfrak{M} . If $\nu \in L(G)$ then Lemma 3 implies that ν is the weak-* limit in M(G) of a net $\{\mu_{\alpha}\}$ of elements of \mathfrak{M} . If $f \in L_{\infty}(G)$ and $\omega \in \mathfrak{M} \cap L(G)$, then $g(x) = \int f(x+y) \, d\omega(y) \in C(G)$ and, hence, $\int f \, d\omega \cdot \mu_{\alpha}$ converges to $\int g \, d\nu = \int f \, d\omega \cdot \nu$; i.e., $\{\omega \cdot \mu_{\alpha}\}$ is a net in $\mathfrak{M} \cap L(G)$ which converges weakly to $\omega \cdot \nu$ and so $\omega \cdot \nu \in \mathfrak{M} \cap L(G)$. It follows that $\mathfrak{M} \cap L(G)$ is an L-ideal of L(G). However, the only L-ideals of L(G) are (0) and L(G). Hence $L(G) \subset \mathfrak{M}$. Also $\mathfrak{M} \subset (L(G))^{1/2}$, otherwise there would be a complex homomorphism of M(G) which was zero on L(G) and nonzero on \mathfrak{M} , contradicting the fact that the maximal ideal space of \mathfrak{M} is G^{\wedge} .

LEMMA 5. If G contains no copy of R, then $L(G) \subseteq \mathfrak{M} \subseteq (L(G))^{1/2}$.

Proof. Under this hypothesis, G and G^{\wedge} each contain an open-compact subgroup, by the principal structure theorem (cf. [5, Theorem 2.4.1]). Let K be an open-compact subgroup of G^{\wedge} . Since G^{\wedge} is the maximal ideal space of \mathfrak{M} , Shilov's theorem (cf. [3, Theorem 3.6.3]) implies the existence of $\mu \in \mathfrak{M}$ such that $\mu^{\wedge}(\chi) = 0$ for $\chi \notin K$ and $\mu^{\wedge}(\chi) = 1$ for $\chi \in K$. Then μ is Haar measure on an open-compact subgroup H of G ($H = \{x \in G : \chi(x) = 1 \text{ for } x \in K\}$). Thus $\mu \in L(G)$ and the conclusion follows from Lemma 4.

LEMMA 6. If G is of the form $K \times R$ where K is compact, and

$$G^+ = \{(k, r) \in K \times R : r > 0\},\$$

then there exists a nonnegative measure $\mu \in \mathfrak{M}$ concentrated on G^+ with compact support and $\|\mu\| > 1$ such that $\mu^{\wedge}(\chi) \neq 1$ for each $\chi \in G^{\wedge}$.

Proof. It follows from Lemma 3 that it is enough to show the existence of a $\nu \in L(G)$ with the above properties. An example of such a measure ν is $\nu = 2(\rho \times \omega)$, where ρ is Haar measure on K and ω is Lebesgue measure on [0, 1] in K.

THEOREM 2. If G contains no copy of R^n for n > 1, then $L(G) \subseteq \mathfrak{M} \subseteq (L(G))^{1/2}$.

Proof. If G contains no copy of R, then Lemma 5 gives us the result; otherwise, the hypothesis, together with the structure theorem for l.c.a. groups, implies that G has an open subgroup G_1 of the form $K \times R$ with K compact. Let \mathfrak{M}_1 be the subalgebra of \mathfrak{M} consisting of all measures in \mathfrak{M} which are concentrated on G_1 . It is easily seen that \mathfrak{M}_1 is an L-subalgebra of $M(G_1)$ with maximal ideal space G_1° . Thus the preceding lemmas hold for \mathfrak{M}_1 as a subalgebra of $M(G_1)$.

Now let μ be the element of \mathfrak{M}_1 given by Lemma 6. Since μ^{\wedge} never assumes the value one, μ has an adverse (cf. [2, §21]); i.e., there is an element $\nu \in \mathfrak{M}_1$ such that $\mu\nu = \mu + \nu$. If μ had norm less than one, its adverse would be $\omega = -\sum_{n=1}^{\infty} \mu^n$. Since μ is concentrated on G_1^+ , the series $\sum \mu^n$ converges on each compact subset of G_1 , but since $\|\mu\| > 1$ and $\mu \ge 0$, it converges to an unbounded measure.

The Laplace-Stieltjes transform, $\tilde{\rho}$, for a measure ρ on $G_1 = K \times R$ is defined by $\tilde{\rho}(\chi, z) = \int_{K \times R} e^{-zt} \bar{\chi}(k) \, d\rho(k, t)$, for $\chi \in K^{\wedge}$ and z a complex number, whenever this integral converges. Note that since μ has compact support, $\tilde{\mu}$ exists and is analytic in z for all χ , and $\mu^{\wedge}(\chi, y) = \tilde{\mu}(\chi, iy)$, for y real, is the Fourier-Stieltjes transform of μ . Since ν is a bounded measure, $\tilde{\nu}$ exists for z imaginary and

$$\tilde{\nu}(\chi, iy) = \nu^{\hat{}}(\chi, y) = \mu^{\hat{}}(\chi, y)[\mu^{\hat{}}(\chi, y) - 1]^{-1}.$$

Also, for sufficiently large positive r, $\int e^{-rt} d\mu(k, t) < 1$ and $\int e^{-rt} d\omega(k, t)$ is finite. Thus, for $x \ge r$, $\tilde{\omega}(\chi, x+iy)$ exists and equals $\tilde{\mu}(\chi, x+iy)[\tilde{\mu}(\chi, x+iy)-1]^{-1}$.

The function $f(\chi, z) = \tilde{\mu}(\chi, z) [\tilde{\mu}(\chi, z) - 1]^{-1}$ is analytic in z except where $\tilde{\mu}(\chi, z) = 1$, and at such points it has simple poles. Also, since $\tilde{\mu}(\chi, z)$ approaches zero at infinity for $\text{Re}(z) \ge 0$, there can be at most finitely many poles of f in the region $\text{Re}(z) \ge 0$.

Let $\{\rho_{\alpha}\}$ be a weak-* approximate identity for M(G) consisting of elements of $L(G_1)$ with compact support and norm one, whose Laplace transforms $\tilde{\rho}_{\alpha}$ have the property that $\tilde{\rho}_{\alpha}(\chi, a+iy)$ is integrable in (χ, y) for each $a \in R$. Let $g_{\alpha}(k, t)$ be the Radon-Nikodym derivative of ρ_{α} for each α ; then, the inversion formula (cf. [5], Theorem 1.5.1) implies that

$$g_{\alpha} * \nu(k, t) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \left[\sum_{x \in K^{\Lambda}} e^{zt} \chi(k) f(x, z) \rho_{\alpha}^{\hat{}}(x, z) \right] dz$$

and

$$g_{\alpha} * \omega(k, t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} \left[\sum_{\chi \in K^{\lambda}} e^{zt} \chi(k) f(\chi, z) \rho_{\alpha}^{\hat{}}(\chi, z) \right] dz,$$

for $x \ge r$. It follows that

$$g_{\alpha} * (\omega - \nu)(k, t) = \frac{1}{2\pi i} \sum_{\chi \in P} \int_{\Gamma} e^{zt} \chi(k) f(\chi, z) \rho_{\alpha}^{\hat{}}(\chi, z) dz$$

where P is the finite set of points $\chi \in K^{\wedge}$ for which $f(\chi, z)$ has a pole in the region $\text{Re}(z) \ge 0$, and Γ is any simple closed curve in $\text{Re}(z) \ge 0$ enclosing all such poles. Then $g_{\alpha} * (\omega - \nu)$ converges uniformly on compact subsets of G_1 to the function

$$\phi(k, t) = \frac{1}{2\pi i} \sum_{x \in P} \int_{\Gamma} e^{zt} \chi(k) f(\chi, z) dz,$$

while $\rho_{\alpha} \cdot (\omega - \nu)$ converges weakly, relative to continuous functions with compact support, to the measure $\omega - \nu$. It follows that $\omega - \nu$ is absolutely continuous on each compact set with Radon-Nikodym derivative ϕ . Thus, if λ is the restriction of $\omega - \nu$ to any compact subset of G_1 , we have $\lambda \in L(G_1) \cap \mathfrak{M}_1 \subset L(G) \cap \mathfrak{M}$. In view of Lemma 4, the proof is complete.

Added in proof. We have recently obtained a proof of Theorem 2 without the condition on G. Thus, the conjecture mentioned at the beginning of this paper is true.

BIBLIOGRAPHY

- 1. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Springer-Verlag, Berlin, 1963.
- 2. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York, 1953.
 - 3. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960.
- 4. M. A. Rieffel, A characterization of commutative group algebras and measure algebras, Trans. Amer. Math. Soc. 116 (1965), 32-65.
 - 5. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.
- 6. J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150-166.
- 7. A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95-112.

University of Utah, Salt Lake City, Utah